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A B S T R A C T   

The discharge of pathogens into urban recreational water bodies during combined sewer overflows (CSOs) pose a 
potential threat for public health which may increase in the future due to climate change. Improved methods are 
needed for predicting the impact of these effects on the microbiological urban river water quality and infection 
risks during recreational use. The aim of this study was to develop a novel probabilistic-deterministic modelling 
approach for this purpose building on physically plausible generated future rainfall time series. The approach 
consists of disaggregation and validation of daily precipitation time series from 21 regional climate models for a 
reference period (1971–2000, C20), a near-term future period (2021–2050, NTF) and a long-term future period 
(2071–2100, LTF) into sub-daily scale, and predicting the concentrations of enterococci and Giardia and Cryp
tosporidium, and infection risks during recreational use in the river downstream of the sewage emissions from 
CSOs. The approach was tested for an urban river catchment in Austria which is used for recreational activities (i. 
e. swimming, playing, wading, hand-to-mouth contact). According to a worst-case scenario (i.e. children bathing 
in the river), the 95th percentile infection risks for Giardia and Cryptosporidium range from 0.08 % in winter to 8 
% per person and exposure event in summer for C20. The infection risk increase in the future is up to 0.8 log10 for 
individual scenarios. The results imply that measures to prevent CSOs may be needed to ensure sustainable water 
safety. The approach is promising for predicting the effect of climate change on urban water safety requirements 
and for supporting the selection of sustainable mitigation measures. Future studies should focus on reducing the 
uncertainty of the predictions at local scale.   

1. Introduction 

Microbial safety of urban rivers is of paramount importance for 
public health when used for recreation, drinking water production or 
irrigation. Heavy rainfall events resulting in combined sewer overflows 
(CSOs) impair the quality of receiving waters through the discharge of 
waterborne pathogens such as the reference pathogens Giardia and 
Cryptosporidium (DeSilva et al., 2016; Feng and Xiao 2011) posing a 

potential public health risk when people are exposed during recreational 
activities (i.e. splashing, wading, hand-to-mouth contact of playing 
children). Such events are therefore often associated with waterborne 
infections according to reviews by Semenza (2020) and Guzman et al. 
(2015). This problem is likely to increase due to climate change leading 
to more extreme precipitation events worldwide (Bürger et al., 2021; 
Christensen and Christensen, 2003; Trenberth 2011). Appropriate and 
timely risk communication is critical for effective adaptation 
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management (Cardona et al., 2012). The effects of climate change on 
CSO discharges, and the chemical and microbiological water quality of 
receiving waters have been studied in the past empirically or by means 
of urban hydrological modelling (Abtellatif et al., 2015; Gooré Bi et al. 
2015; Jalliffier-Verne et al., 2015; Sterk et al., 2016; Gogien et al., 
2022). For modelling the urban hydrological processes during CSOs, 
input rainfall data are required at high temporal resolutions due to the 
limited storage effects and the quick rainfall-runoff transformation, as 
demonstrated by Schilling (1991), Ochoa-Rodriguez et al. (2015), and 
references therein. On top of that, rainfall intensities can increase 
stronger at sub-daily than at daily temporal resolution, as found e.g. by 
Burn and Taleghani (2013) for a Canadian study area, and by Bürger 
et al. (2021) and Berg et al. (2013) for German regions. Rainfall time 
series from climate models, however, are generally available only at 
daily time steps. For disaggregating the rainfall time series, several 
methods were proposed such as the rectangular pulse model (Kout
soyiannis and Onof, 2001) and the method-of-fragments (Breinl and Di 
Baldassarre, 2019; Gogien et al., 2022). A more promising method 
which has not been applied in this context is the micro-canonical 
cascade model (Olsson, 1998). It considers the scaling behaviour of 
the rainfall process, which is assumed to be stationary over time and not 
affected by climate change, and exactly keeps the daily total amounts of 
rainfall during disaggregation. Another important advantage of the 
cascade model is the generation of continuous rainfall time series. This 
enables analysing e.g. the impact of complex long-lasting rainfall events 
with nested convective events in contrast to events with selected dura
tions and return periods of rainfall. 

Despite of this, most studies investigating the impacts of climate 
change on the water quality downstream of sewage emissions from CSOs 
used future precipitation data at daily temporal resolution as input, 
often relying on strongly simplified assumptions (Jalliffier-Verne et al., 
2015; Gooré Bi et al. 2015). For example, Jalliffier-Verne et al. (2015) 
estimated loads of the faecal indicator bacteria E. coli into rivers via 
CSOs based on projected daily precipitation data available from regional 
climate models. The authors acknowledged that large uncertainties were 
involved in the predicted microbial loads due to a lack of local precip
itation data for the future. Likewise, Gooré Bi et al. (2015) studied the 
impact of future climate on rainfall extreme values and loads of total 
suspended solids, organic and metal tracers, by adding a uniform in
crease of 20 % to the maximum observed 5 min rainfall intensity 
following guidelines of the Canadian government (MDDEFP 2013). The 
physical plausibility and the return periods of the constructed events of 
the above listed studies can be questioned, as the overall event charac
teristics such as the duration and the total rainfall amount remained 
unchanged. Only few modelling studies exist so far on the effects of 
global changes on the microbiological water quality and waterborne 
pathogen infection risks downstream of sewage emissions from CSOs 
(Jalliffier-Verne et al., 2017; Sterk et al., 2016). Jalliffier-Verne et al., 
2017 considered an increase in concentrations of E. coli in CSO water as 
a consequence of population growth leading to a higher load of sewage. 
The authors, however, did not account for an increase in rainfall 
amounts or CSOs. In contrast, Sterk et al. (2016) transformed reference 
rainfall data according to changes under selected climate scenarios to 
study the effects on the bathing water infection risks downstream of 
sewage emissions from CSOs. 

There is thus an urgent need for re-evaluating the impact of climate 
change on the microbiological water safety downstream of the sewage 
emissions from CSOs based on a correct representation of the rainfall 
processes as the major driver. The aim of this study was to develop a 
novel probabilistic-deterministic modelling approach for predicting the 
future changes in concentrations of faecal indicators (enterococci) and 
reference pathogens (Giardia and Cryptosporidium) in an urban river 
downstream of sewage emissions and the infection risks during recrea
tional use (i.e. splashing, wading, hand-to-mouth contact of playing 
children). The approach builds on generated disaggregated future 
rainfall time series at sub-daily scale using the enhanced micro- 

canonical cascade model by Müller and Haberlandt (2018, Section 
3.1). We tested the approach for a hypothetical urban drainage system 
aligned to the local conditions of an urban river catchment in Vienna, 
Austria. 

2. Study area and data 

2.1. Rainfall, water quantity data and exposure types 

The study area is a river catchment in Vienna, Austria, inhabiting 
approximately 148,000 people (Fig. 1). The study area is classified as 
cold climate without dry season but warm summers according to the 
Köppen-Geiger climate classification (Peel et al., 2007). Rainfall data 
were available every 5 min for the years 2012–2020 (stations P1 – P5). 
The mean observed annual precipitation in the area was 770 mm during 
2012–2017. The event-based and continuous rainfall characteristics are 
summarised in Table 1. The river originates west of Vienna and receives 
discharges from several tributaries. The river flow discharges at the river 
gauge range from 0.1 to 60 m3/s with a mean of 1.8 m3/s during 
2012–2017. The river levels respond quickly to storm events with a 
response time of less than 30 min. The river is fed primarily from runoff 
from urban and forested flysch areas. The households in the urban hy
drological model area (Fig. 1) are connected to a combined sewer sys
tem. The average dry weather wastewater flow from the catchment area 
is 0.65 m3/s (Wien Kanal, personal communication). CSOs occur during 
times when the amount of rainfall and wastewater exceeds the storage 
capacity. There are several locations where CSOs can discharge into the 
river upstream the river gauge. These are connected to the urban sewer 
system which pipes the sewage water mixed with rain water towards the 
WWTP (Fig. 1). CSO discharges were measured directly upstream of the 
river gauge from June to September 2020. Water pressure transducers 
were installed next to the overflow wall and the discharges were esti
mated based on the formula of Poleni. Nine CSO events were observed in 
total. 

Although the river is not an official bathing site, it is a popular rec
reational site throughout the year, and is also used for swimming in 
particular during summer. People can be exposed more or less 
throughout the year, e.g. via hand-to-mouth contact during playing, 
wading, biking in the river or when walking dogs taking baths in the 
river. 

2.2. Climate scenarios 

For climate impact analysis we used the bias-corrected ÖKS15-pro
jections (Chimani et al., 2018; CCCA, 2020). The ÖKS15-projections are 
based on the regional climate models (RCM) of the EURO–CORDEX 
initiative, which are based on global climate models (GCM) within the 
CMIP5 initiative (Taylor et al., 2012). The ÖKS15-projections include 13 
combinations of GCM and RCM for both scenarios, RCP4.5 and RCP8.5. 
From these 26 GCM-RCM combinations, two combinations of 
MOHC–HadGEM_CLM were removed due to pronounced un
derestimations of rainfall, especially in Eastern Austria which is where 
the study area is located (Chimani et al., 2018). Two more GCM-RCM 
combinations (MOHC–HadGEM_RCA) and one EC-Earth combination 
(EC-EARTH_CLMcom) were removed due to inconsistencies in the time 
series, i.e. the 31st of each month was missing. The resulting 21 
GCM-RCM combinations were applied in this study (listed in the sup
plementary material S1). Although the climate data is provided with a 
technical raster width of 1 km, the true resolution is represented by a 
raster width of 12.5 km. For each rain station, the time series of the 
containing raster cell was extracted for a reference period (1971–2000, 
C20), a near-term future period (2021–2050, NTF) and a long-term 
future period (2071–2100, LTF). These climate scenario time series 
are from here on referred to as the respective rainfall stations P1 – P5. 
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3. Probabilistic-deterministic modelling approach 

The modelling approach for predicting the impact of climate change 
on the concentrations of faecal indicators (enterococci) and reference 
pathogens (Giardia and Cryptosporidium) in the river downstream of the 
sewage emissions from CSOs and the infection risks associated with 
recreational use (section 2.1) consists of the following steps (outlined in 
Fig. 2):  

1) Rainfall disaggregation and validation of the rainfall time series from 
21 GCM-RCM combinations for C20, NTF and LTF periods (Section 
2.2) from daily into 5-minute intervals using the micro-canonical 
cascade model of Müller and Haberlandt (2018), an enhanced 
version of the original cascade model (Olsson, 1998, Section 3.1).  

2) Prediction of the CSO volumes and frequencies, and concentrations 
of enterococci, Giardia and Cryptosporidium in CSO water using the 
disaggregated time series from step 1 as input for an urban hydro
logical model (US EPA SWMM5.1, Rosmann, 2015, Section 3.2).  

3) Prediction of the river runoff using the disaggregated rainfall time 
series from step 1 as input for a distributed conceptual rainfall-runoff 
model (Blöschl et al., 2008; Section 3.3).  

4) The results from steps 2 and 3 serve as input for modelling the 
dilution of enterococci, Giardia and Cryptosporidium in river water 
and the infection risks during recreational use (Sections 2.1 and 3.4). 

To provide insights into the spatial component of the climate change 
effects, we used rainfall time series for each station P1 – P5 in step 1 
(Fig. 1). In steps 2–4 we narrowed down the analysis to one rainfall 
station (P3) focusing on the temporal components. 

3.1. Rainfall disaggregation and validation 

To increase the temporal resolution Δt of the rainfall time series from 
the climate projections (Section 2.2), daily time steps are disaggregated 
to 5 min time steps using a micro-canonical cascade model according to 
Müller and Haberlandt (2018). The cascade model is applied due to its 
performance in previous studies (e.g. Müller and Haberlandt, 2015, 
Müller-Thomy, 2019, 2020). The basic principle is the self-similarity of 
neighbouring temporal scales, which enable conclusions from rainfall 

Fig. 1. Study area with hydrological and urban hydrological model domain and location of the rainfall stations, the river gauge and the WWTP collecting the 
wastewater mixed with rain water from the area. 

Table 1 
Event-based and continuous rainfall characteristics based on the 5-minute observed rainfall time series during 2012–2017 in the study area.  

Rainfall 
station 

Station- 
ID 

Average intensity [mm/ 
5 min] 

Average wet spell amount 
[mm] 

Average wet spell duration 
[min] 

Average dry spell duration 
[min] 

Probability of zero 
precipitation [%] 

P1 LS3–21 0.2 0.4 11.1 286.9 96.3 
P2 LWS-03 0.2 0.5 13.6 341.7 96.4 
P3 LWS-22 0.2 0.4 11.6 302.3 96.3 
P4 RWS-11 0.2 0.4 11.4 296.9 96.3 
P5 RH1–15 0.2 0.4 12.2 342.2 96.7  

Fig. 2. Methodological steps and resulting data sets to analyse the impact of 
climate change on the microbiological river water quality and pathogen 
infection risks during recreational use downstream of sewage emissions 
from CSOs. 
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intensities on a coarse scale on realistic rainfall intensity distribution on 
the neighbouring finer scale. This self-similarity is comprised in the 
cascade model parameters, which are estimated data-driven by aggre
gation of the observed 5 min precipitation time series at the five 
recording stations during 2012–2017 (Fig. 1). In Fig. 3, the general 
scheme of the cascade model is illustrated, disaggregating one coarse 
time step into b finer time steps of equal duration, where b is the 
branching number. While in the first disaggregation step b = 3 is applied 
(Δt: 24 h → 8 h), b = 2 is used throughout the subsequent disaggregation 
steps (Δt: 8 h → 4 h → 2 h → 1 h → 0.5 h → 0.25 h → 7.5 min). To achieve 
Δt = 5 min a linear transformation is applied. For the splitting, the 
weights W1 and W2 are used to determine the rainfall volume in the two 
fine time steps. The sum of W1 and W2 is 1 in each split, so that the 
rainfall volume is conserved exactly. An aggregation of the dis
aggregated rainfall would result in the same time series that has been 
used for the disaggregation. Possible combinations of W1 and W2 are 
given in (1), the so-called cascade-generator: 

W1,W2 = x and 1 − x; 0 ≤ x ≤ 1 (1) 

P is the probability of each combination of weights. The probability P 
(0/1) e.g. denotes a splitting with no rainfall volume assigned to the first 
time step (W1) and 100 % of the rainfall volume (W2 =1 - W1) in the 
second time step. The variable x is the relative fraction of rainfall 
assigned to the first time step. Considering x as a random variable for all 
disaggregation steps, a probability density function f(x) with the 
empirical probabilities for each value of x is estimated. Four different 
position classes that are assigned to each time step of the time series 
(starting, enclosed, isolated, ending) and two volume classes for each 
position are used. The mean of all rainfall intensities of the current 
cascade level (e.g. for Δt = 4 h) for one position was used as an 
acceptable threshold for this differentiation. For a detailed description 
of the cascade model we refer to the description of the cascade model 
variant B2 in Müller and Haberlandt (2018). 

For the validation the extreme values are extracted as peak-over- 
threshold to increase the extreme value population due to the short
ness of the observed time series (DWA-A 531, 2012). The threshold was 
chosen in a way to obtain three extreme events per year on average. The 
independency of the single events is assured by a minimum of 4 h 
without rainfall between two extreme events. The return periods T of the 
events are calculated with an empirical distribution function after Fuchs 
(1983) as suggested in (DWA-A 531, 2012): 

T =
L + 0.2
k − 0.4

⋅
M
L

(2)  

with k as index of sorted extreme events with 1 for the biggest and L for 
the smallest event, since L determines the population amount in de
pendency of the time series length M (with L = 3 M). 

3.2. Combined sewer system and urban hydrological model 

For the representation of the urban hydrology an artificial sewage 
system is used, which is a common approach to analyse the impacts of 
rainfall data sets (e.g., Kim and Olivera, 2012). The artificial sewage 
system used in this study is adopted from Müller and Haberlandt (2018), 

and was modified to represent the hydrological characteristics of the 
study area. The EPA Storm Water Management Model 5.1 (SWMM, 
Rossman, 2015) was used to simulate the runoff quantity and quality 
from urban areas simultaneously. 

The general setup of the model is explained in the supplementary 
material S2. Here, we provide details on how we adopted single model 
parameters for the study area. In total, 22 sub-catchments ranging from 
16.5 ha to 240 ha were constructed. The size of the urban hydrological 
model domain was 2500 ha in total. The widths of the sub-catchments 
were set according to their actual dimensions ranging from 400 to 
3000 m. The surface slopes of the sub-catchments ranged from 1.4–7.3 
% with a mean value of 4.1 % according to the respective mean surface 
elevations of the digital terrain model. The imperviousness of the sub- 
catchments and the length of the conduits were adjusted during cali
bration for each sub-catchment so that the timing and duration of 
simulated and observed CSO discharges matched (calibration results are 
provided in the supplementary material S2). The imperviousness ranged 
from 50–100 % (mean value 81 %), and the conduit length ranged from 
100–6000 m with a total length of 31.3 km after calibration. A retention 
tank (40,280 m3) was implemented to store wastewater mixed with rain 
water if the capacity of the WWTP is reached. In case of exceedance of 
the capacity, the water is emitted to the receiving water via CSOs. 

Thirty realisations of the disaggregated rainfall time series were 
applied for each climate scenario period (C20, NTF and LTF). The urban 
hydrological simulations were run continuously to avoid a priori as
sumptions about which rainfall extreme values could cause CSOs, and 
about the soil moisture contents before the rainfall events. This enabled 
a more realistic simulation of the CSO discharges (Saadi et al., 2020). For 
simulating the concentrations of enterococci, Cryptosporidium and 
Giardia in CSO water, we set the concentrations of the respective pa
rameters in the dry weather flow of raw wastewater (Craw) equal to ten 
times the mean values observed in raw wastewater at WWTP (Fig. 1, 
Section 3.4). This was done in order to compensate for the additional 
contribution of further CSO discharges upstream and diffuse faecal 
sources via surface runoff in the urban area which were not considered 
in the artificial sewer system. The respective concentrations in surface 
runoff were assumed to be zero. 

3.3. Rainfall-runoff model 

The runoff from the Vienna River catchment was simulated contin
uously on an hourly time step using a distributed conceptual rainfall- 
runoff model (Blöschl et al., 2008), which is explained in more detail 
in the supplementary material S4. The hydrological model domain area 
is 199 km2 (Fig. 1). The spatial resolution of the model is 1 km x 1 km. 
The calibrated and validated hydrological model was used to simulate 
C20, NTF and LTF. As for the urban hydrological model (Section 3.2), 
the disaggregated rainfall time series served as model input and were 
applied as spatial uniform rainfall. Observed air temperature from the 
meteorological station Hohe Warte during the C20 period served as 
further model input. 

3.4. Dilution of microorganisms in river water and QMRA 

The concentrations of microorganisms in CSO water (CCSO, Section 
3.2) are diluted with river water downstream the outlet point. The mi
crobial concentration in river water (Criver) is calculated as 

Criver =
CCSO⋅QCSO

Qriver
+ Criver, bg.obs (4)  

where QCSO [m3/s] is the simulated CSO discharge (Section 3.2), Qriver 
[m3/s] is the simulated river discharge (Section 3.3), and Criver,bg.obs is 
the microbial background concentration in river water and was 
described by selected statistical distributions (Section 3.5, more details 
are provided in the supplementary material S3). Inactivation of 

Fig. 3. General scheme of the cascade model for the first two disaggregation 
steps with exemplary rainfall amounts for a daily total of 8 mm (blue boxes =
wet time steps). 
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pathogens in the sewer system and in the river directly downstream of 
the sewage emissions was assumed negligible. Note that future changes 
in water temperature and the effects of temperature-dependent inacti
vation also need to be considered when investigating the microbiolog
ical river water quality further downstream, as shown e.g. by Sterk et al. 
(2016). 

The risks of infection per person and exposure event are calculated 
assuming that recreation takes place directly downstream of the sewage 
emission. The ingested dose D during recreational use is: 

D = Criver × V (5)  

where V [m3] is the individual volume of water that was consumed by 
swimmers (Schets et al., 2011). V depends on the type of exposure type 
(i.e. splashing, wading, hand-to-mouth contact of playing children or 
other visitors, Section 2.1). V is gamma-distributed with values of r =
0.64 and λ=58 for swimming children according to Schets et al. (2011) 
and Schijven et al. (2015) which is considered a worst-case scenario. To 
account for the probability of exposure differing over the seasons (Sec
tion 2.1), the infection risks are weighted by factors of 0.01 (winter), 0.1 
(spring and autumn), and 1 (summer). Alternatively, one could model 
the likelihood of exposure based on survey data as demonstrated by 
Sterk et al. (2016). We selected this simplified approach for not intro
ducing another complexity in the model that could mask the effects of 
climate changes. 

For Cryptosporidium the risk of infection (Pinf) per person and expo
sure event was calculated using the hypergeometric dose–response 
model (Teunis and Havelaar 2000): 

Pinf = 1 − 1F1(α,α+ β,D) (6)  

where α (0.3) and β (1.1) (Schijven et al., 2015; Schijven et al., 2011) are 
infectivity parameters that are pathogen-specific and 1F1 is the confluent 
hypergeometric function. For Giardia the exponential dose-response 
model was used (r = 0.02, Regli et al., 1991). The concentrations of 
enterococci, Cryptosporidium and Giardia in the river and the risks of 
infection per person and exposure event for Cryptosporidium and Giardia 
were calculated at hourly time steps by solving Eqs. 4–5, and Eq. (6), 
respectively, for the 30 realisations and the C20, NTF, and LTF periods, 
respectively. 

3.5. Water quality analysis and data 

Monthly monitoring for enterococci, and the two reference patho
gens Cryptosporidium and Giardia was conducted of raw wastewater and 
river water during base flow, and of river water during CSOs and flood 
events during 2018–2019. The methods and data for sampling and water 
quality analysis are described in the supplementary material S3. 

4. Results 

4.1. Rainfall disaggregation 

Before the cascade model was applied to disaggregate the rainfall 
time series for the climate scenarios (C20, NTF, LTF), it was validated for 
the study area. The performance of the cascade model indicates its 
applicability for the disaggregation (validation results are provided in 
the supplementary material S5). The disaggregated rainfall time series 
were analysed regarding their extreme values with a focus on typical 
return periods T for urban hydrological applications and dimensioning 
purposes (T = {2, 5, 10 yrs}). Fig. 4 shows the median rainfall amounts 
resulting from 30 disaggregation realisations for each GCM – RCM 
combination and period exemplary for the rainfall durations D = 5 min 
and D = 2 h, both for return periods T of 2 years. These results are 
representative for all durations and return periods. Results for rainfall 
stations P1, P2 and P3 are similar for all D and T, while P5 leads to 
higher values in all cases. Extreme values for P4 are closer to those for 
P1, P2 and P3 for D < 1 h and closer to those for P5 for D ≥ 1 h. Although 
some of these combinations show an increase for NTF and a decrease for 
LTF, they show an absolute increase in the future overall. The percent 
changes of the mean rainfall extreme values are very similar for all 
stations (see supplementary material S6 for all stations), we therefore 
discuss the results only for rainfall station P3 (Table 2). Over all return 
periods and rainfall durations, the rainfall amounts increase by 8–22 % 
for NTF and 15–33 % for LTF relative to C20 with the largest increases 
for high return periods and high rainfall durations. 

4.2. Hydrological model results 

For the results of the urban hydrological model we differentiated 
between CSO < 1.0 m3/s, 1 - 1.5 m3/s and >1.5 m3/s. The fraction of 
time steps with CSO increases by 9–39 % relative to C20, with a larger 
increase for LTF than for NTF (Fig. 5, Table 3). The increase is almost 

Fig. 4. Rainfall extremes for rainfall stations P1 – P5 with a return period of T = 2 yrs for D={5 min, 2 h}. Each point represents the median of 30 disaggregation 
realizations. 
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three times larger for large than for small CSO events (Table 3). 
For analysing seasonal effects, we defined all time steps from 

December to February as winter, all time steps from March to May as 

spring, all time steps from June to August as summer, and all time steps 
from September to November as autumn. The simulations showed the 
highest CSO volumes in summer and the lowest ones in winter for all 
future periods. For all seasons the simulations showed an increase of 
CSO volumes by 26 to 37 % for NTF and LTF relative to C20 (Table 4). 
The future changes in CSO volumes relative to C20 range from 21 to 31 
% for NTF, and from 28 to 53 % for LTF over different seasons. 

According to the results of the rainfall-runoff model the river runoff 
is highest in spring, and lowest in autumn in all periods. The river runoff 
increases relative to C20 by 10 to 19 % for NTF and LTF over all seasons. 
The relative change to C20 range from 5 to 16 % for NTF, and from 12 to 
31 % for LTF over different seasons. 

The mean mixing ratio calculated between simulated CSO and river 
runoff (Qcso/Qriver) showed an increase for both NTF and LTF relative to 
C20 indicating an increase in CSO concentration. As the increases in CSO 
volumes and river runoff do not linearly correspond, this results in a 
larger increase of the mixing ratio for NTF (45 %) than for LTF (29 %) 

Table 2 
Percent change of rainfall extreme events for NTF and LTF in comparison to C20 for different return periods T and durations D for rainfall station P3.  

D T (yrs) 

0.33 0.5 1 2 5 10 

NTF LTF NTF LTF NTF LTF NTF LTF NTF LTF NTF LTF 

5 min 10 16 10 17 11 19 12 19 14 21 18 24 
30 min 10 16 10 17 12 19 13 20 15 23 20 27 
1 h 10 16 11 17 12 19 13 20 17 24 21 30 
2 h 10 16 11 17 12 19 13 20 17 24 21 30 
24 h 8 15 9 16 11 16 11 18 18 22 22 33  

Fig. 5. Fraction of 5 min-time steps during CSO occurrence [%] for the C20, NTF and LTF. CSOs are differentiated for <1.0 m3/s, 1 - 1.5 m3/s and >1.5 m3/s. Red 
diamonds show the mean, boxes the 25th and 75th percentile, whiskers the 5th and 95th percentile, and black horizontal lines the median values. 

Table 3 
Fraction of time steps during CSO occurrence [%] followed by the relative 
change to C20.  

Period Fraction of time steps during CSO occurrence 

CSO < 1.0 m3/s CSO 1 - 1.5 m3/s CSO > 1.5 m3/s 

Mean 
value 
[%] 

Relative 
change to 
C20 [%] 

Mean 
value 
[%] 

Relative 
change to 
C20 [%] 

Mean 
value 
[%] 

Relative 
change to 
C20 [%] 

C20 3.6 – 2.9 – 2.5 – 
NTF 4.0 9 3.4 16 3.1 25 
LTF 4.1 14 3.7 26 3.4 39  

Table 4 
Statistics of CSOs, river flows and mixing ratios over the complete simulation time.  

Period Season CSO River Mixing ratio 

Mean value [m3/s] Relative change to C20 [%] Mean value [m3/s] Relative change to C20 [%] Mean value [-] Relative change to C20 [%] 

C20 All seasons 0.12 – 2.17 – 0.036 – 
Winter 0.10 – 1.92 – 0.047 – 
Spring 0.11 – 3.00 – 0.019 – 
Summer 0.15 – 2.25 – 0.035 – 
Autumn 0.12 – 1.48 – 0.042 – 

NTF All seasons 0.15 26 2.39 10 0.052 45 
Winter 0.13 31 2.23 16 0.061 30 
Spring 0.14 28 3.14 5 0.033 71 
Summer 0.18 24 2.54 13 0.049 40 
Autumn 0.15 21 1.62 10 0.065 53 

LTF All seasons 0.17 37 2.57 19 0.046 29 
Winter 0.15 53 2.51 31 0.061 30 
Spring 0.16 38 3.37 12 0.027 39 
Summer 0.19 28 2.62 16 0.042 18 
Autumn 0.16 35 1.77 20 0.055 31  
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relative to C20 over all seasons. 

4.3. Microbiological river water quality and infection risks during 
recreational use 

The dilution of microorganisms in river water (Section 3.4) resulted 
in mean concentrations of enterococci, Cryptosporidium and Giardia of 
7.0 × 104 CFU/l, 7.4 oocysts/l and 28.8 cysts/l for C20 in the river 
downstream of the sewage emissions from CSOs over all seasons 
(Table 5). The mean infection risks during recreational use (i.e. 
splashing, wading, hand-to-mouth contact of playing children and other 
visitors) are 1.25 % and 0.47 % per person and exposure event for 
Cryptosporidium and Giardia, respectively, according to the QMRA 
(Table 6). 

The seasonal analysis for C20 showed that the mean concentrations 
are highest in autumn and lowest in spring, i.e. on average 10 / 20 % 
higher and 10 / 40 % lower than over all seasons for Cryptosporidium / 
Giardia, respectively (Table 5). In contrast, the mean infection risks are 
highest in summer and lowest in winter, i.e. on average 230 % higher 
and 100 % lower than over all seasons (Table 6). This is mainly attrib
uted to the fact that the assumed likelihood of exposure is highest and 
lowest during these seasons, respectively (Section 3.4). The infection 
risks for Cryptosporidium and Giardia increase relative to C20, with 
lowest increases in summer (e.g. 33 % for NTF and LTF for Giardia), and 
highest increases in spring (47 and 38 % for Giardia, Table 6). For 
Cryptosporidium, the infection risks increase only by 7–10 % in the 
future. This is because in contrast to concentrations of enterococci and 
Giardia, which were by factors of 39 and 7 higher in the river during 
CSOs than during base flow, concentrations of Cryptosporidium were by a 
factor of 2 lower (results not shown). To investigate the 95th percentile 
infection risks, we evaluated the cumulative probabilities for Giardia 
(Fig. 6). The 95th percentile infection risks range from 0.08 % in winter 
to 8 % per person and exposure event in summer for C20, and increase 
by 0.2–0.3 log10 in the future. The 95th percentile infection risk was also 
used to evaluate the variability resulting from different climate sce
narios, seasons and disaggregation realizations. The variability of 
infection risks was higher over different seasons than over different 
climate scenarios and rainfall disaggregation realizations (ranging over 
up to 2.4, 0.8 and 0.1 log10 % per person and exposure event, respec
tively, Fig. 7). The infection risks increase by up to 0.8 log10 in the future 
for individual scenarios (Fig. 7 left). 

For evaluating the microbiological water quality model, we 
compared the simulated concentrations of enterococci, Cryptosporidium 
and Giardia in the river for C20 (Table 5) with the measured concen
trations in the river during CSOs and flood events in 2018–2021 (see 
supplementary material S2). For this comparison, we considered the 

mean simulated values for C20 over the time steps when CSOs occurred. 
According to that the observed and simulated concentrations matched 
with mean errors of 0.10–0.15 log10 CFU/l or (oo)cysts/l. 

5. Discussion 

In this study, we presented a novel probabilistic-deterministic 
modelling approach for quantifying the effect of climate change on 
the microbiological river water quality considering recreational water 
safety downstream of sewage emissions from CSOs. This approach al
lows for the first time addressing this question considering the predictive 
uncertainty of short-term rainfall events by a physically plausible gen
eration of future rainfall time series at sub-daily time scales. This is an 
important consideration because the relative change of the extreme 
values on the daily scale in general does not represent the relative 
change of extreme values on finer temporal scales. This was shown 
before by e.g. Burn and Taleghani (2013), and Bürger et al. (2021), and 
also in our simulations. For return periods of 0.33 years, e.g., the future 
increase in extreme rainfall values relative to C20 was found similar for 
durations of 5 min as for durations of one day. In contrast, for return 
periods of 10 years, the relative change in extreme rainfall values 

Table 5 
Mean concentrations of enterococci [CFU/l], Cryptosporidium [oocysts/l] and Giardia [cysts/l] in river water calculated over 30 years of simulation time for C20, NTF 
and LTF with rainfall time series from 21 different regional climate models applied from station P3.  

Period Season enterococci [CFU/ 
l] 

Relative change to C20 
[%] 

Cryptosporidium [oocysts/ 
l] 

Relative change to C20 
[%] 

Giardia [cysts/ 
l] 

Relative change to C20 
[%] 

C20 All seasons 7.0 £ 104 – 7.4 – 28.8 – 
Winter 8.0 × 104 – 7.7 – 32.7 – 
Spring 4.3 × 104 – 6.6 – 18.4 – 
Summer 7.3 × 104 – 7.5 – 30.0 – 
Autumn 8.4 × 104 – 7.8 – 34.1 – 

NTF All seasons 9.1 £ 104 31 8.1 9 37.1 29 
Winter 9.9 × 104 24 8.3 8 40.2 23 
Spring 6.2 × 104 45 7.2 9 25.8 40 
Summer 9.0 × 104 23 8.0 7 36.5 21 
Autumn 1.1 × 105 37 8.8 12 46.1 35 

LTF All seasons 8.6 £ 104 24 7.9 7 35.2 22 
Winter 1.0 × 105 25 8.4 8 40.5 24 
Spring 5.5 × 104 30 7.0 6 23.2 26 
Summer 8.3 × 104 14 7.8 4 34.1 13 
Autumn 1.1 × 105 28 8.6 9 43.1 26  

Table 6 
Mean Cryptosporidium and Giardia infection risks [%] per person and exposure 
event during recreational use of river water calculated over 30 years of simu
lation time for C20, NTF and LTF with rainfall time series from 21 different 
regional climate models applied from station P3.  

Period Season Cryptosporidium Giardia 

Infection 
risk [%] 

Relative 
change to 
C20 [%] 

Infection 
risk [%] 

Relative 
change to 
C20 [%] 

C20 All 
seasons 

1.25 – 0.47 – 

Winter 0.04 – 0.02 – 
Spring 0.38 – 0.10 – 
Summer 4.13 – 1.56 – 
Autumn 0.42 – 0.17 – 

NTF All 
seasons 

1.35 8 0.62 34 

Winter 0.04 7 0.02 32 
Spring 0.41 8 0.15 47 
Summer 4.44 7 2.07 33 
Autumn 0.45 9 0.23 36 

LTF All 
seasons 

1.35 8 0.62 34 

Winter 0.04 8 0.02 35 
Spring 0.41 6 0.14 38 
Summer 4.44 7 2.07 33 
Autumn 0.46 10 0.24 41  
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between future and reference periods was 10–11 % smaller for durations 
of 5 min than for durations of one day. Our simulation results reflected 
the ability of the enhanced micro-canonical cascade by Müller and 
Haberlandt (2018) to account for the physical characteristics of the 
rainfall time series during disaggregation; i.e., while more frequent 
rainfall extreme values result rather from strong convective and hence 
short-duration events, less frequent rainfall extremes originate from 
stratiform events with a more homogeneous temporal distribution of 
rainfall amounts. 

The model simulations revealed that higher ranges of climate change 
effects on the infection risks downstream of sewage emissions are 
possible (up to 0.8 log10) than previously shown due to the range of 
considered climate models (e.g. Abdellatif et al., 2015, Sterk et al., 

2016). On top of that, the simulations revealed strong variations in 
infection risks over seasons and different climate scenarios, ranging over 
2.4 and 0.8 log10 % per person and exposure event, respectively. Un
certainties with regards to climate models and emission scenarios arise 
regarding how the human population will develop in the upcoming 
decades but also due to mathematical simplifications, phenomena which 
are not yet completely understood such as storm trains, or longer 
droughts, or the natural variability of the climate systems (Chimani 
et al., 2018). All climate models and assumptions have the same justi
fication, and to account for their intrinsic climate variability and model 
uncertainty, it is best to include many of them in the climate analyses 
(Chimani et al., 2018; Martre et al., 2015). This inclusion demands a 
statistical downscaling of the climate scenario time series as suggested in 

Fig. 6. Cumulative probability distributions of the upper percentile infection risks [% per person and exposure event] for Giardia during recreational use in the river 
downstream of sewage emissions from CSOs over 30 years of simulation time for C20, NTF and LTF with rainfall time series from 21 different regional climate models 
applied from station P3. 

Fig. 7. Variability of 95th infection risks [% per person and exposure event] for Giardia resulting from different climate scenarios (left), seasons (centre) and 
disaggregation realizations (right). Shown are averages over all climate scenarios (black), and values for three selected climate scenarios (blue, green, yellow). 
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this study, which is faster and less computationally intense than a 
physical downscaling. A physical downscaling of all climate scenarios is 
to date not feasible. 

There are further global change factors affecting the river water 
quality downstream of sewage emissions from CSOs which were not 
considered in this study. The climate warming and associated increase of 
evaporation can have an impact on urban runoff and CSOs. This effect is, 
however, presumably small in urban areas due to the limited storage. 
Moreover, the changes of evaporation partly depend on vegetation dy
namics, which are not well reflected in current climate scenario runs. 
Future adaptation measures such as the implementation of green 
infrastructure adds to the complexity of this question. These effects 
could be subject of future research particularly for the analysis of sea
sonal changes of future river water quality downstream sewage emis
sions from CSOs. Studying these effects, however, would require a bias- 
correction of regional climate models for precipitation and future tem
perature data at sub-daily temporal scale. Future research on climate 
change with regards to water quality and safety must focus further on 
characterizing the impacts of climate change at a local scale (Jallif
fier-Verne et al. 2017), e.g. by employing spatial downscaling tech
niques for regional climate models, or by including enhanced 
observation data of CSOs. 

The presented approach can further be used for characterizing the 
microbiological water quality based on the simulated concentrations of 
faecal indicators in the river. For our study site, e.g., the simulated mean 
concentrations of enterococci in the river (Table 4) correspond with the 
microbiological water quality assessment category D and a > 10 % risk 
of GI illness according to the WHO guidelines on recreational water 
quality (WHO, 2021). Note, however, that the recreational activities at 
our study site (i.e. splashing, wading, hand-to-mouth contact of playing 
children and other visitors), lead in general to lower exposure than 
during swimming. Also, with the presented approach the seasonal 
variation of exposure can be accounted for e.g. according to Sterk et al. 
(2016). 

The integrated approach presented in this study can be applied in 
other urban river settings by using site-specific historic rainfall time 
series at high temporal resolution and regional climate models. Ideally, a 
calibrated urban hydrological model should be used instead of an arti
ficial sewer network. While demonstrated here for enterococci, and the 
protozoan reference pathogens Cryptosporidium and Giardia, the model 
approach can be extended for any other pathogen. The approach can aid 
in supporting the sustainable urban water safety planning, and the se
lection of appropriate infection protection measures. 

6. Conclusions 

This study presents a novel probabilistic-deterministic modelling 
approach for predicting the future changes in the microbiological river 
water quality considering safe recreational use downstream of sewage 
emissions from CSOs. Building on the enhanced micro-canonical cascade 
by Müller and Haberlandt (2018), the approach allows for the first time 
evaluating this question by use of continuous rainfall time series at 
sub-daily temporal resolution. The demonstrated approach allows 
considering a multitude of regional climate scenarios and the uncer
tainty of generated future rainfall time series resulting in probabilistic 
distribution ranges of all predicted variables. The model simulations 
revealed strong variations in infection risks over seasons and different 
climate scenarios, ranging over 2.4 and 0.8 log10 % per person and 
exposure event, respectively. The increase of infection risks in the future 
is 0.2–0.3 log10 per person and exposure event over the ensemble of 21 
ÖKS15-projections and up to 0.8 log10 % per person and exposure event 
for individual climate scenarios. Investments to prevent CSOs would be 
beneficial to ensure sustainable recreational water safety. In future 
studies the presented approach could be adopted to other emerging 
pathogens and contaminants and aid in evaluating the effectiveness of 
mitigation measures such as the implementation of green infrastructure 

or the unsealing of paved areas. 
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Blöschl, G., Reszler, C., Komma, J., 2008. A spatially distributed flash flood forecasting 
model. Environ. Model. Softw. 23 (4), 464–478. https://doi.org/10.1016/j. 
envsoft.2007.06.010. 

Breinl, K., Di Baldassarre, G., 2019. Space-time disaggregation of precipitation and 
temperature across different climates and spatial scales. J. Hydrol., Region. Stud. 21, 
126–146. https://doi.org/10.1016/j.ejrh.2018.12.002. 

Bürger, G., Pfister, A., Bronstert, A., 2021. Zunehmende Starkregenintensitäten als Folge 
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Gooré Bi, E., Monette, F., Gachon, P., Gaspéri, J., Perrodin, Y., 2015. Quantitative and 
qualitative assessment of the impact of climate change on a combined sewer 
overflow and its receiving water body. Environ. Sci. Pollut. Res. 22 (15), 
11905–11921. https://doi.org/10.1007/s11356-015-4411-0. 

Guzman, H., Bernardo, R., Freiesleben de Blasio, B., MacDonald, E., Nichols, G., 
Sudre, B., Vold, L., Semenza, J.C., Nygård, K., 2015. Analytical studies assessing the 
association between extreme precipitation or temperature and drinking water- 
related waterborne infections: a review. Environ. Health 14, 29. https://doi.org/ 
10.1186/s12940-015-0014-y. 

Jalliffier-Verne, I., Leconte, R., Huaringa-Alvarez, U., Madoux-Humery, A.S., 
Galarneau, M., Servais, P., Prévost, M., Dorner, S., 2015. Impacts of global change on 
the concentrations and dilution of combined sewer overflows in a drinking water 
source. Sci. Total Environ. 508, 462–476. https://doi.org/10.1016/j. 
scitotenv.2014.11.059. 

Jalliffier-Verne, I., Leconte, R., Huaringa-Alvarez, U., Heniche, M., Madoux-Humery, A. 
S., Autixier, L., Galarneau, M., Servais, P., Prévost, M., Dorner, S., 2017. Modelling 
the impacts of global change on concentrations of Escherichia coli in an urban river. 
Adv Water Resour. 108, 450–460. https://doi.org/10.1016/j. 
advwatres.2016.10.001. 

Kim, D., Olivera, F., 2012. Relative importance of the different rainfall statistics in the 
calibration of stochastic rainfall generation models. J. Hydrol. Eng. 17 (3), 368–376. 
https://doi.org/10.1061/%28ASCE%29HE.1943-5584.0000453. 

Koutsoyiannis, D., Onof, C., 2001. Rainfall disaggregation and adjusting procedures on a 
Poisson cluster model. J. Hydrol. 246, 109–122. https://doi.org/10.1016/S0022- 
1694(01)00363-8. 

Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., Rötter, R.P., Boote, K.J., 
Ruane, A.C., Thorburn, P.J., Cammarano, D., Hatfield, J.L., Rosenzweig, C., 
Aggarwal, P.K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., 
Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R.F .HL., Hooker, J., 
Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Kersebaum, K.C., Müller, C., Kumar, S.N., 
Nendel, C., O’Leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E., 
Ripoche, D., Semenov, M.A., Shcherbak, I., Steduto, P., Stöckle, C.O., 
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